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1. Abstract

We_describe new techniques for curve matching and model-based object recog-
nition, which arc based on the notion of shape-signature, The signature which we
use is an approximation of pointwise curvature. The talk will describe a curve
matching algorithm which generalizes a previous aljgorithm due to Schwartz and
Sharir which was developed using this signature allowing improvement and generali-
zation of a previous model-based object recognition scheme. The results and the
experiments to be descried r_late to 2.D images. However natural extensions to
the 3-D case exist and are being developed.

2. Introduction.

The purpose of this talk is to survey the work done in the Robotics Laboratory
of the Courant Institute on Model-BasedObject Recognition with emphasis on recent
results. Recognition of industrial parts and their location in a factory environment
is a major task, in robot vision. Most industrial part recognition systems are model-
based systems (see a survey in [I]). The model based approach is well suited for an
industrial environment, _ince the objects processed by the robot are usually known
in advance, and belong to a certain subset of the factory's tools and products.

We discuss the 2-D object recognition problem, where the robot is faced with a
composite scene of overlapping parts (thus partially occluding each other), taken
from a large data-base of known objects (e.g. the factory's_warehouse). The task is
to recognize the objects in the scene and their location, we want the recognition
time to be fast and depend on the size of the scene, which is usually small, and not
on the size of the initial large data-base.

The al$orithms which we describe were actually tested in a "real life situation"
by recognition of objects comprising composite scenes of about ten thin overlapping
cardboard pieces taken from a data-base of hundred pieces. In our approach the
camera is held at a constant height over the scene, i.e is suitable for a conveyor belt
situation.

Since we are concerned with recognition of overlapping objects, we cannot
make use of global features such as area, perimeter or centroid of a 2-D object.
However, since a 2-D object is fully described by its boundary curve, both globally
and locally, we can use these curves in our recognition nrocess. This restores
developme'n't of robust and efficient curve matching algoritftms. These algorithms
are applicable not only for object recognition tasks, but also to other tasks where
curve matching is required.



3. Preproceuing and Data Acquisition

We begin with three major preprocessing steps :

I) Planar pieces are photographed by a black and whke RCA 2000 camera, and
the pictures are digitized and thresholded to get a binary image for each piece.

2) The boundary of each piece is extracted from the binary image. These boun-
dary curves are our "experimental curves.

3) A smootMn# procedure is applied to each. curve. We use the procedure which
is dascribedin detail in [2]. Basically, this expanas me noisy curve to a narrow
strip defined by a certain threshold .value t and then f'mds the shortest _path
lying in this 2t-wide strip.( It may ue imaginea as stretching a loose ruDDer
band within a narrow sleeve.) This gives a polygonal approximation of each
observed curve.

4. The Schwartz-Sharir Curve Matching Algorithm

The first algorithm we are going to describe is due to Schwartz and Sharir (see
[2]). Given a curve and a proper subcurve of it in the plane, it computes me rota-
tion and translation of the subcurve relative to the curve which gives the best match
in an L2 kind of metric. Moreover it also computes the distance between the two
aligned curves in this metric, thus giving us a score of the quality of the proposed
match.

Take two curves C and C' in theplane and assume that C is a translated and
rotated subcurve of C'. Both C and C' are assumed to have been smoothed (i.e.
they are polygonal approximations of the original curves) and parametrized by arc
length s. The matching we seek calls for determination of the offset so and the
Euclidean transform_,tion E for which the curves EC(s) and C'(s +so) are closest to
one another in the L _ norm. Specifically, we represent each of the .curves C, C' by,
a sequence of evealy spaced points on it, and let tl_ese sequences _e (uj)j=1 ana
(vj)_=! respectively, Assume first that both curves have the same starting point (.i.e:
s0ffi0 and, hence, m _ n). Matchin_g amounts to finding a Euclidean motion z_ o_
the plane which will minimize the/_ distance between the sequences (Euj)]ffil and
(vj)_'._:

el

A-- rain _ IEuj- vii 2
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To simplify the calculation, first translate C so that
n

_u_=0
j=l

Next write E as Eu = R0u + a, R0 denoting a counterclockwise rotation by 0.

In such case, as it is shown in [S-S], the best match is obtained when

a = _ Vj
n j=l

and 0 is the negation of the polar angle of _ uj_j, where the vectors u j, v/ are
regarded as complex numbers uj, vj. The least-square distance for this best match
is given by

= n - --[_ vii + _ lu/ 2[_ uj_j] (*)_ Ivil 2 I " 2 " 12 "
jr1 n j=1 j=1 j=1

If the curves do not have the same starting point, we have to match the

seauence (uj)n=l to each of 'he contiguous subsequences (V/+d)_=X of the sequence
(vj')7= 1, for d'= 0 ..... ra ,n.
For each such d (*) thus becomes

•_ _" d+_n d+n n n
A(d) = 2, Ivj[ 2 - 1--I _ vJ [2 + _ [uyl2 - 21_ uj_j+d[

jfd+l n j=d+l jr1 j=l
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We seek the minimum of the values A(d), d _ffi0 ..... m-n, which can be found in

time 0 (m log m), using the fast Fourier transform algorithm for computing the con-

volutions _ uj_j÷a-

j=l
The algorithm described above is a corner-stone of our subsequent techmques.

It has two major advantages - speed and robustness, as demonstrated in an experi-
ment of a successful computerized assembly of 100 piece jigsaw puzzles with a lot of
almost similar pieces (see [3]). (The algorithm was used as the local curve matching
algorithm between the boundary curves of the pieces providing scores to the good-
ness of this matches, and then a global algorithm, based on combinatorial optimiza-
tion techniques, used this scores to compute the correct solution of the puzzle.)

The curve matching algorithm can be applied directly to give a first solution of
the model-based object recognition problem. First we have to divide the boundary
of our composite scene into subcurves, such that each such subcurve is supposedly
part of the boundary curve of a different object in the scene. This can be done most
simply ,by assuming, that objects in a scene meet at sharp concave angles ( the so
called breakpoints in ,[4]). Then each such subcurve can be matched against the
boundary curves of all .he objects in our data,base to determine the best matching
object. However, this a_proach has two serious drawbacks in regard to our original
goals. First, the use of breakpoints may in some cases cause a wrong subdiwsion
of the boundary of the composite scene; secondly, the speed of recognition grows
linearly with the size of the data-base, indicating the need for a more efficient tech-
nique. Thus further development is required, and the following sections will
describe solutions to these proolems, However, as was mentioned before, this algo-
rithm is an essential part of the later developed methods, mainly because of its
robustness.

5. The Generalized Curve Matching Algorithm

In order to avoid the use of the "breakpoint" heuristic, and also be able to
solve a number of other curve matching problems we require an efficient solution to
the following more general curve matching problem:

given two curves, find the longest matching subcurve which appears in both curves.

An approach to this problem due to Wolfson (see [6]) can be summarized as
follows :

Step A - Represent both curves by characteristic strings which represent local
translatlonally and rotationally invariant features.

Step B : Find the longest common substring of the two characteristic strings,
and also find other long common substrings if these are nearly as long.

Step C : For each substring produced by Step B , go back to the original curves
and match the two subcurves which correspond to this substring using the l_receding
subcurve matching algorithm, thus determining the desired translation ann rotation

• of one curve with respect to the other.

Step D : Rotate and translate the curves accordingly, and determine again the
longest matching subcurves of the two curves, given this rotation and translation.
This subcurve is found by simply checking the (x,y) coordinates of corresponding
noints on the curves and demanding that the distance between the points should be
Iess than a certa;,n threshold value _. This final check works with points on the
curves themselves, and not with the (less accurate) feature string values at these

points; hence it is quite robust.
The result giving the longest matching subcurve (allowing minor mismatches) is

chosen as the final solution.

Two algorithms using this approach were developed, reflecting a certain trade-
off between robustness and the theoretical complexity of these proposed techniques.
One of them uses efficient string matching techniques due to Weiner and to
McCreight (see [7],[8]) to find the long mate[king substrings in time which is linear
in the length of the strings. This makes the whole algorithm linear in the number of
sample points on both curves, since the information obtained at Step B allows the

105



°

curve matching algorithm to be implemented in linear time as well. However, the
string matching algorithms mentioned above require the string elements with which
they work to be taken from a finite alphabet, which forces us to truncate the fea.t_e
strings (which consist of real numbers). This may cause otherwise long matching
substrings to split into a number of shorter matching strings. To overcome this
problem we developed a string matching algorithm which regards string elements
equal when the difference between the two elements is less than a certain threshold
value t. This _Igorithm can be implemented in time which is proportional to
Max(n log n, en'), thus making this algorithm quite efficient for curves of practical
length. Experiments have shown this algorithm to be both efficient and robust.

This approach enables us to solve the object recognition problem by matching
the boundary curve of the composite scene against the boundary curves of the
objects in the data-base. Objects having long subcurves matching the composite
scene and satisfying obvious consistency requirements will be objects participating in
the scene. However this approach stilldoes not satisfy the efflciency goalthat we
have set, since it is linearly dependent on the number of objects in the data-base.
Thus additional ideas must be applied to the solution of the object recognition prob-
lem.

6. Shape Signatures

The method described in the previous section uses local rotationally and trans-
lationally invariant features to characterize boundary curves. In this section we will
examine one such feature.

Our aim is to represent any curve C by a characteristic strin_ of reals (ci)_=l.
Since these strings will be compared to achieve subcurve matching, we want the
numbers (ci)_=l to encode characteristics of the curve which are :

i) local,

ii) translationaUy and rotationally invariant,

iii) stable, in the sense that small changes in the curve induce small effects (or no
effect at all) in the associated sequence (ci)7-1,

a further desirable, but less essential, property is :

iv) an approximation to an observed curve can be reconstructed from its charac-
teristic string.

One "natural" feature which satisfies these conditions is the pointwise curva-
ture of a curve (see Chapter II of [9]). It is well known that there is a one to one
correspondence between a regular curve (modulo translation and rotation) and its
curvature function (which is a continuous function of its arclength). However, our
applications must deal with noisy polygonal representations of curves, making it
impossible to compute curvatures either accurately, or at every point of a curve.
Thus we must work with an approximation of the curvature, calculated at discrete
points of the curve, to get a data sequence (ci)_=l having the desired properties.

Let K(s) be the curvature function of a curve C, where s denotes arclength
along the curve. K(s) is the derivative of the tangent angle 0(s) to the curve,
parametrized as a function of its arclength. To approximate the curvature, we first
build the so called arclength versus turning angle graph of the curve C, (Since after
our smoothing procedure we have a polygonal approximation of the observed curve,
this is a step function.) Then we sample this graph at equally spaced points, and at
every such point si ( i = 1 ..... n) we compute the difference

A0(s_) = O(si + As) -0(s_)

(To make the method more robust we actually compute an averaged difference

_'- = AvAO(si) = 1 k-1
..,., -'__ AO(si + jS)

i=0

Detailed choice of the parameters As, k, 8 is based on experimental considerations.)
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Remark: The averaged differences (<bD satisfy the conditions (i)-(iii) required
of local curve characteristics.

At fh'st glance algorithms based on such features would not seem to be robust,
since we are computing approximations of a second derivative of an initially noisy
function. Thus this kind of signature needs to be appl!ed with care, mainly in prel-
iminary steps which aim simply to filter out obvious wrong candidates in an effi-
cient way, to prepare for final decisions made using more robust procedures. Note
that in the previous algorithms described the use of the feature strings was quite
limited: we used it to locate approximate starting points and endpoints of several
long candidate subcurves for matching. Matching itself is done using the robust
subcurve matching algorithm.

In the following section we will describe another use of shape signatures which
solves the object recognition problem in a still more efficient way.

7. The "Footprint" Approach

In this section we give a method which solves the object recognition problem in
a particularly efficient way. The method was first developed by Kalvin, Schonberg,

Schwartz and Sharir in [4]and later improved by Hong and Wolfson (see [5]). We
will present the later vers!on, which d!ffers from the previous one in two aspects - it
does not require use of breakpoints in advance to divide the boundary curve of
the composite scene into subcurves belonging to different objects, and it uses shape
signatures based on approximate local curvatures, rather than the Fourier descrip-
tors used in the previous version.

The alsorithm consists of two major steps. The first one is a preprocessing
step which is done on the data'base ofmodelobjects to be recognized. The com-
plexity of this step is linear in the size of the data-base. This step can be executed
off-line before actual recognition is needed. The second step, recognition proper,
uses the data prepared by the first step and can be executed in time which on the
average is linearly dependent on the size of the composite s_ne, thus achieving
recognition time almost independent on the size and number of objects in the data-
base.

A) Preprocessing

All the objects in the data-base are processed as follows. The boundary curve
of every object is scanned and shape signature values are generated at equally

spaced points. (We use,a 5,tuple of approximate local curvatures at consecutive
points.) This footprint is local,' translationally and rotationally invariant. For
each such footprint we record the object number and the sample point number at
which this footprint was generated. (This data is held as a hash-table.) The 'foot-
dPrint" data points on the boundary of the object have a natural order, which is

efined by the way the boundary curve is traced. This preprocessing step is linearly
dependent on the total of sample points on the boundary curves of all the objects in
the data-base. New objects added to the data-base can be processed independently
without recomputing the hash-table (except when we must change its size by re-
hashing).

B) Recognition

In the recognition stage the boundary curve of the composite scene is scanned
and footprints are computed at equally spaced points. For each such footprint we
check the appropriate entry in the hash-table, and for every pair of object number
and sample point number, which appears there, we tally a vote for the object and
the relative shift between the object and the scene. For example, if a footprint,
which was computed at the i th sample point on the composite zcene, appeared on
objects kl and/_2 at sample points Jl anaj2 respectively, we add votes to object kl
with relative shift i-j1 and object k2 with relative shift i-j2.

At the end of this process we find those (object,shift) pairs that got most of the
votes, and for every such pair determine approximate starting and endpoints of
match between ,he footprint string of the composite scene and the footprint string of
the object under the appropriate shift. Given these matching substrings we may
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apply the robust subcurve matching algorithm described previously. This process
resembles that used in the generahzed curve matching algorithm presented in sec-
tion 5. Once the object which has the longest matching subcurve with the composite
scene is discovered, we decide that it is one of the objects in the scene, discard its
matching subcurve, and repeat the process for the remaining ,turves in the reduced
composite scene. At this stage a number of objects can be processed simultane-
ously.

The algorithm described is on the average linear in the number of sample
points in the composite scene, and does not depend directly on the number of points
on the boundaries of all the objects in the data-base. Thus we achieve the efficiency

goal set at the beginning.

, An improvement of this method can be achieved by the introduction of
' weighted footprints. Since for typical curves in different environments not all the
footprints have an equa!,probability of occurrence, it seems desirable not to gl,ve an
equal weight to every hit , but to give a higher weight to coincidence of 'rare'
footprints. The actual probability of an individual footprint can be estimated by the
number of its occurrences in the data-base, which can serve as a statistical sam_?le
for this kind of data. The weighted footprint approach can also impr,,ve its effi-
ciency by assigning zero weight to very frequent footprints and thus saving us the
need to process hash-table entries with a lot of candidates. These entries require
much computer time but contribute only a small amount of information.

The method described above has proved to be quite robust. It also generalizes
previously used methods based on use of special boundary features such as sharp
angles. In our approach this is a special case, these special features being assigned
large weight, while other features get zero weight, An appropriately sophisticated
wmght function can benefit from all the available information, and can deal with
scenes which have no sharp angles or any other distinctive features, which are
known in advance.

A major potential advantage of our "footprint" algorithm is its high inherent
narallelism. Parallel implementation of this algorithm is straightforward; moreover,
_-tshould be quite easy to build a special device for this implementing it at very high
speed.

8. 3-D Curve Matching

All the algorithms described here apply just as well to 3-D curve matching.
The subcurve matching algorithm of section 3 has been imolemented in the 3-D case
(see [10]) and seen to perform well; currently a generalized curve matching algo-
rithm, which uses 3-D shape signatures is being implemented.
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